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 This study examines the impact of dataset dimensionality on deep learning 

performance in musculoskeletal disease detection, focusing on osteoporosis 

and rheumatoid arthritis. Using over 200,000 annotated X-ray, DXA, and 

MRI images, the performance of Vision Transformer (ViT), ConvNeXt, and 

Swin Transformer models was systematically evaluated in terms of 

scalability, robustness, and multi-modal integration. Results demonstrate 

that increasing dataset scale significantly enhances model generalization, 

with Swin Transformer achieving the best performance (AUC = 0.94, p < 

0.001). These findings underscore the critical role of self-attention 

mechanisms and model scaling strategies in medical image classification, 

providing new benchmarks for dataset requirements and guiding the 

development of more reliable AI-driven diagnostic systems. Furthermore, 

the study emphasizes the necessity of large, diverse datasets to mitigate 

overfitting and improve real-world applicability. It also highlights the 

potential of hybrid architectures for integrating multi-source medical data. 

Overall, this research contributes to advancing explainable and scalable AI 

solutions for musculoskeletal imaging in clinical practice. 

Keywords: Deep Learning, Dataset Scaling, Computer Vision, Neural Network 

Architecture. 

 
 

I. INTRODUCTION  

Automated medical image analysis has significantly 
progressed with the advent of deep learning, yet various 
challenges persist in the detection of musculoskeletal diseases. 
Osteoporosis and rheumatoid arthritis (RA) exhibit subtle and 
complex visual manifestations, requiring high-resolution 
imaging and multi-modal analysis. Although large-scale 
datasets play a crucial role in improving deep learning model 
generalization, the precise relationship between dataset scale 
and model efficacy remains underexplored in medical artificial 
intelligence. Additionally, underfitting and overfitting continue 
to present major obstacles in achieving optimal model 
performance. 

The growing prevalence of musculoskeletal disorders 
worldwide underscores the necessity for advanced AI-driven 
diagnostic tools. However, the availability of large-scale, 
annotated medical imaging datasets remains limited, restricting 
the training and evaluation of deep learning models. The 
integration of multiple imaging modalities, such as X-ray, 
DXA, and MRI, introduces complexities in feature alignment 
and network optimization, requiring sophisticated approaches 

to data fusion. Furthermore, computational scalability poses a 
challenge, as high-capacity models demand significant 
processing power, while overfitting prevention techniques must 
be carefully implemented to ensure robust generalization 
across diverse patient populations. 

This study contributes to the field by conducting a 
comprehensive benchmarking of Vision Transformer (ViT), 
ConvNeXt, and Swin Transformer architectures for 
musculoskeletal disease detection. It presents the first large-
scale, multi-modal study integrating X-rays, DXA scans, and 
MRI sequences to assess osteoporosis and RA classification. 
The empirical evaluation of dataset scaling effects on deep 
learning model performance provides valuable insights into the 
role of dataset size in healthcare AI. Additionally, the study 
offers an in-depth analysis of underfitting and overfitting 
effects, shedding light on the importance of appropriate model 
selection and training strategies. By establishing guidelines for 
dataset requirements and model selection, this research aims to 
facilitate the future development of clinical AI applications, 
ensuring that deep learning models can be effectively deployed 
for musculoskeletal disease diagnosis and treatment planning. 
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Contributions and Novel Insights; (1) We establish 
empirical dataset-scaling guidelines for musculoskeletal 
imaging by quantifying how AUC, F1, and generalization gap 
evolve with training-set size per modality (X-ray, DXA, MRI) 
and reporting a critical mass 𝑁* where marginal gains plateau. 
(2) We provide novel observations on transformers in multi-
modal settings: hierarchical Swin exhibits lower generalization 
gaps and higher recall than ViT under MRI/DXA and shows 
greater robustness to partial-modality ablation; ViT benefits 
more from higher resolutions but is more data-intensive at 
small scales. (3) We translate these findings into deployment-
oriented recommendations (Swin for sensitivity-driven 
screening; ConvNeXt for real-time constraints). 

II. RELATED WORK 

A. Deep Learning for Medical Imaging 

Recent advancements in medical AI have significantly 
improved disease detection, leveraging powerful deep learning 
models for automated diagnostics. Vision Transformers have 
demonstrated competitive performance in various medical 
imaging applications, including dermatology and radiology, 
where they provide improved feature extraction and 
interpretability [1] [2]. The mathematical formulation of deep 
learning-based classification can be expressed as: 

         

Where X represents the input medical image, θ denotes the 
learnable parameters, and y is the predicted diagnosis. Multi-
modal learning approaches, which combine different imaging 
techniques such as X-ray, DXA, and MRI, enhance diagnostic 
accuracy by integrating diverse sources of information for a 
more comprehensive analysis [3]. Additionally, self-supervised 
learning has emerged as a promising approach for medical AI 
applications with limited labeled data, leveraging contrastive 
loss functions: 

           ∑        
 
    (     )  

∑         (     )  


where sim⁡(z_i,z_j )represents a similarity function and is 
a temperature scaling factor[4][5] 

B. Dataset Scaling and Model Generalization 

The relationship between dataset size N and E error rate is 
commonly approximated as:  

  𝑁   𝑁     (3) 

Where α is an empirical constant depending on model 
complexity and task difficulty [6]. The generalization error 
E_gen can be expressed as:    

                                                    (4) 

Where   is the regularization parameter that prevents 
overfitting[6]. 

C. Overfitting and Underfitting in Medical AI 

Overfitting and underfitting remain central challenges in 
deep learning for medical imaging. The bias-variance 
decomposition provides insight into model generalization, 
given as: 

 [    ̂  ]        
 
               (5) 

where    is the irreducible error, represents error due to 
model assumptions, and accounts for sensitivity to training data 
variations [7]. Overfitting, characterized by high variance and 
low bias, can be reduced through regularization techniques 
such as dropout, batch normalization, and weight decay. The 
generalization gap   is quantified as: 

  |              |   (6) 

Where         and       denote training and test errors, 

respectively. Underfitting, marked by high bias and low 
variance, results in poor learning and is often mitigated by 
increasing model capacity or dataset size. The learning 
dynamics of a model can be further described by the weight 
update equation in gradient-based optimization: 

                       (7) 

Where   is the learning rate and      is the loss function 
guiding parameter updates. 

By integrating these mathematical formulations and 
incorporating relevant citations, this study enhances the 
understanding of how dataset scaling, model architecture, and 
regularization influence generalization in deep learning models 
for medical imaging. 

D. Models Architectures 

Three state-of-the-art architectures are evaluated in this study: 

Vision Transformer (ViT), ConvNeXt, and Swin Transformer. 

Vision Transformer (ViT) leverages self-attention mechanisms 

to process global spatial dependencies in images [1]. 

ConvNeXt builds upon hierarchical feature extraction, 

incorporating residual connections and depthwise convolutions 

to enhance performance [2]. Swin Transformer introduces a 
hierarchical vision architecture using shifted windows, 

allowing improved computational efficiency and local feature 

extraction while maintaining long-range dependencies. 

1) Vision Transformer (ViT) 

The current model has been selected for its technical skill for 

attention to capturing global space relationships. As presented 

in Figure 1, it depicts the standard components of a Vision 

Transformer model. The diagram shows the processing 

pipeline from input image through patch embedding, position 

embedding, transformer encoder (with 12 layers including 

multi-head attention, MLP, and layer normalization 
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components), and finally to an MLP head for classification or 

other downstream tasks. 

 

Figure 1: Vision Transformer Architecture 

 
TABLE 1: VISION TRANSFORMER FOR MEDICAL IMAGE ANALYSIS 

Fundamental architecture 
Specific features for medical 

imaging 

-Image division into 16x16 patches 
-Position embedding to preserve 

spatial information 

-12 transform encoder layers with 
multi-head attention 

-MLP head for final classification 

-Adaptation of input size 
(224x224x3) for medical images 

-Layer Normalization to stabilize 

learning 
-Multi-head attention to capture 

complex 
spatial relationships 

 

2) ConvNeXt 
The current model has been selected for its technical 

proficiency in capturing hierarchical spatial features with a 
convolutional-based architecture. As presented in Figure 2, it 
depicts the standard components of a ConvNeXt model. The 
diagram illustrates the processing pipeline from the input 
image through an initial stem layer, followed by multiple 
ConvNeXt blocks organized into four hierarchical stages. Each 
block incorporates depthwise separable convolutions, layer 
normalization, GELU activation, and residual connections. The 
final stage includes a global average pooling layer, followed by 
an MLP head for classification or other downstream tasks. 

Figure 2: Vision Transformer Architecture 
 

TABLE 2: KEY ARCHITECTURAL FEATURES AND OPTIMIZATIONS OF THE 

CONVNEXT MODEL 

Hierarchical structure Optimizations 

Conv 4x4 with stride 4 for stem  

4 block stages with (3,3,9,3) blocks 
respectively  

Global pooling and FC 1000 for 

classification 

Layer Norm for standardization  

Optimized convolutions for local 
feature extraction  

Architecture adapted to the 

particularities of medical images 

 

3) Swin Transformer 
The current model has been selected for its ability to 

efficiently capture hierarchical spatial dependencies using a 
transformer-based architecture. As presented in Figure 3, it 

illustrates the standard components of a Swin Transformer 
model. The diagram showcases the processing pipeline from 
the input image, which undergoes patch partitioning into 4×4 
patches, followed by hierarchical feature extraction through 
multiple Swin Transformer blocks. These blocks consist of 
Windowed Multi-Head Self-Attention (W-MSA) and Shifted 
Window Multi-Head Self-Attention (SW-MSA) mechanisms, 
which enhance local and global feature representations. The 
final stage includes a Swin Block, followed by a classification 
head or other downstream tasks. 

 
Figure 3: Hierarchical Processing Pipeline of the Swin Transformer Model 

 

Figure 4: Windowed and Shifted Window Multi-Head Self-Attention 
Mechanisms  

The Swin Transformer employs an innovative architecture 
that enhances efficiency and accuracy in image processing. It 
starts with 4×4 patch partitioning to segment the input image. 
W-MSA (Window Multi-Head Self-Attention) focuses on local 
regions, while SW-MSA (Shifted Window Multi-Head Self-
Attention) shifts attention windows to connect different regions 
as shown in figure 4. The model follows a hierarchical block 
structure, progressively down sampling feature maps for 
improved computational efficiency and better feature 
representation. 

III. METHODOLOGY 

 The Datasets : 
We use three large-scale sources spanning complementary 
modalities: 

(1) MURA-v2 (X-ray): musculoskeletal radiographs across 

multiple anatomical regions (≈150k images). 

(2) Institutional RA MRI: multi-sequence MRI studies 

curated for rheumatoid arthritis (≈ 50k slices/series) with 

expert annotations. 
(3) Institutional DXA Collection: densitometry scans for 

osteoporosis assessment (≈25k studies). 

 Preprocessing per modality: 
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X-ray (MURA-v2), we use grayscale conversion, and 
intensity clipping to the 0.5–99.5th percentiles, then resize to 
224×224, after that, per-image z-score normalization using 
training statistics. Augmentations (train-only): random 
horizontal flip (p=0.5), rotation (±15°), and mild contrast jitter 
(±10%). 

MRI (RA), for each study, we select diagnostically 
informative slices, apply N4 bias-field correction, resize to 
224×224, and per-volume z-score normalization. 
Augmentations (train-only): flip (p=0.5), rotation (±10°), light 
elastic deformation (p=0.2). 

DXA, first an orientation harmonization, and ROI-
preserving crop, than resize images to 224×224, and per-image 
z-score normalization applied. Finaly, we use an augmentations 
(train-only): flip (p=0.5) and small contrast jitter (±8%). 

All normalization statistics are computed on the training 
split only. We apply splits and class balance, to prevent 
leakage.. 

 Label quality assurance: 
MRI (RA): Two board-certified radiologists independently 

annotated cases; disagreements were adjudicated by a third 
reader. 

X-ray / DXA: Labels follow institutional protocols; we 
performed random spot-checks (5%) and consistency audits 
against metadata. 

A. Training Configuration and Overfitting Prevention 

The models are trained using an AdamW optimizer with a 
learning rate scheduler employing cosine annealing [8]. A 
batch size of 256 is used to balance computational efficiency 
and convergence stability. Early stopping is applied to prevent 
excessive fitting to noise, while dropout (0.2 - 0.5) and L2 
regularization ensure model generalization [9]. Data 
augmentation techniques, such as random rotation, flipping, 
and contrast adjustments, are employed to enhance training 
diversity [10]. To further improve model robustness, five-fold 
cross-validation is performed, ensuring that each model is 
evaluated across multiple dataset splits [11]. 

Additionally, the training loss function incorporates a 
combination of cross-entropy loss for classification and focal 
loss to handle class imbalances in disease detection [12]. The 
gradient updates follow the optimization rule: where is the 
learning rate and is the loss function guiding parameter 
updates. These techniques collectively ensure a balance 
between model complexity and generalization, reducing 
overfitting while maintaining optimal performance. By 
integrating these dataset choices, model architectures, and 
training strategies, this study aims to establish a robust 
framework for musculoskeletal disease detection using deep 
learning. 

B. Scaling Study Design 

We assess dataset scaling by stratified sub-sampling of the 
training data at {25%, 50%, 75%, 100%}, preserving patient-
wise splits and class ratios per modality. For each scale, we 
train with identical hyperparameters and report mean ± SE over 
5 folds. We model performance M(N) with a power-law + 

offset (AUC: 𝑀(𝑁)=𝛽−𝛼𝑁−𝛾) and define the critical mass 𝑁* 
as the smallest 𝑁 where the marginal AUC gain < 0.5 points 
when increasing to the next scale. We repeat the analysis per 
modality and architecture. 

C. implementation details 

 Hardware specifications 
- Experiments were conducted on a workstation 

running Ubuntu 22.04 with NVIDIA RTX A6000 
GPU (48 GB VRAM), Intel Xeon Gold 6338 CPU, 
and 256 GB RAM. 

- Deep learning models were implemented in PyTorch 
2.2 with CUDA 12.2 support. 

 Computational requirements 
- Training each model required approximately 48–72 

hours depending on dataset size and modality. 
- Inference time per image ranged from ~28 ms 

(ConvNeXt) to ~80 ms (ViT) at 224×224 input 
resolution. 

- Full training runs were executed for a maximum of 
100 epochs, with early stopping (patience = 10 
epochs) to prevent overfitting. 

 Hyperparameter values  
- Optimizer: AdamW with initial learning rate = 1e-4 

and cosine annealing scheduler. 
- Batch size: 256 across all experiments. 
- Weight decay: 0.01. 
- Dropout rates: 0.30 (ViT), 0.25 (ConvNeXt), 0.20 

(Swin Transformer). 
- Loss functions: Cross-entropy with focal loss (γ = 2) 

for imbalanced datasets. 
- Regularization: Early stopping, L2 weight penalty, 

and Monte Carlo dropout for uncertainty estimation. 

IV. EXPERIMENTAL RESULTS 

A. Performance Metrics & Overfitting Analysis 

Performance monotonically improves with training-set size 
and follows a diminishing-returns trend well captured by a 

power-law. For Swin, the AUC gain from 50%→100% is 

larger than for ViT at identical input sizes, accompanied by a 
smaller generalization gap. ConvNeXt exhibits the best 
latency–accuracy trade-off across scales illustrated in figure 
Figure 5. 

 

Figure 5: AUC vs. training set size pooled across modalities 
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To evaluate the model performances, we use standard 
classification metrics such as accuracy (Acc), precision (Prec), 
recall (Rec), F1-score (F1), and area under the ROC curve 
(AUC). The table below summarizes model performance at 
different dataset scales and provides insights into overfitting 
tendencies. 

TABLE 3: COMPARATIVE EVALUATION OF VIT, CONVNEXT, 
AND SWIN TRANSFORMER ON MEDICAL IMAGING DATASETS 

Model 25% 

Data 

(AUC) 

50% 

Data 

(AUC) 

100% 

Data 

(AUC) 

Preci

sion 

Recal

l 

F1-

Score 

Overf

itting  

ViT 0.82 0.87 0.91 0.88 0.85 0.86 Mild 
ConvNeX

t 
0.84 0.88 0.92 0.90 0.89 0.89 None 

Swin 

Transfor

mer 

0.86 0.90 0.94 0.92 0.91 0.91 None 

The results in (Table 3) indicate that Swin Transformer 
consistently outperforms the other models across dataset sizes, 
achieving an AUC of 0.94 with balanced precision and recall. 
ConvNeXt also demonstrates strong generalization capabilities, 
maintaining stable performance across training scales. ViT, 
however, shows a mild overfitting trend, exhibiting a 
generalization gap at lower dataset scales. 

B. Generalization Gap Analysis 

The generalization gap, defined as the performance difference 

between training and test datasets, is a crucial indicator of 

overfitting. Our analysis reveals that ViT exhibits a slight 

generalization gap, indicating mild overfitting, especially when 

trained on smaller datasets. In contrast, ConvNeXt and Swin 

Transformer maintain balanced generalization, showing robust 

performance across dataset scales. For ViT, the gap is 

approximately 0.07, while ConvNeXt and Swin Transformer 

maintain gaps below 0.03, suggesting better generalization as 

shown in Table 4. 

TABLE 4: SCALING RESULTS AND PRACTICAL GUIDELINES POOLED 

ACROSS MODALITIES 

Modality Model 
AUC

@50% 

AUC

@100

% 

ΔAUC 

(50→100) 

Gap@

100% 

All (pooled) ViT 0.87 0.91 0.04 ≤0.04 

All (pooled) ConvNeXt 0.88 0.92 0.04 ≤0.03 

All (pooled) Swin Transformer 0.90 0.94 0.04 ≤0.03 

C. Bias-Variance Tradeoff Observations 

The tradeoff between bias and variance is fundamental to 

ensuring optimal model generalization. Our analysis indicates 

that underfitting occurs when models are trained on smaller 

datasets, as they fail to capture complex feature 

representations, leading to high bias. This is particularly 

evident in ViT, where models trained on 25% of the dataset 

exhibit a recall of 0.78 and an F1-score of 0.80, indicating 

difficulty in recognizing patterns due to insufficient training 

data. As dataset size increases, recall and F1-score improve 

significantly, reaching 0.89 and 0.91, respectively, when 

trained on the full dataset. 

Conversely, overfitting becomes more prominent in deeper 

architectures when trained on limited datasets without 

sufficient regularization. This issue is especially observed in 

ViT, where the generalization gap increases to 0.07 when 

trained on 25% of the dataset. However, ConvNeXt and Swin 

Transformer demonstrate strong resistance to overfitting, 

maintaining generalization gaps below 0.03, even when trained 

on smaller datasets. The use of dropout (0.3), batch 

normalization, and extensive data augmentation significantly 

contributes to improved generalization. 

Swin Transformer achieves the best balance between bias and 

variance, maintaining an optimal performance range with an 

AUC of 0.94 and an F1-score of 0.91, while ConvNeXt follows 

closely with AUC = 0.92 and F1-score = 0.89. 

Further numerical analysis demonstrates that early stopping 

(patience = 10 epochs) reduces validation loss fluctuations by 

15%, stabilizing performance and minimizing overfitting risks. 

Additionally, Monte Carlo dropout analysis confirms that Swin 

Transformer maintains a predictive uncertainty range within 

±2%, reinforcing its robustness in clinical deployment 

scenarios. 

These findings highlight the necessity of balancing bias and 

variance through appropriate dataset scaling, regularization 

techniques, and hyperparameter optimization to ensure high-

performance deep learning models for musculoskeletal disease 

detection. 

D. A Comparative Analysis Deep Learning Architectures 

Performance in Medical Imaging 

The comparative analysis of Vision Transformer (ViT), 

ConvNeXt, and Swin Transformer across three medical 

imaging datasets reveals distinctive performance patterns. 

When examining the MURA-v2 radiograph dataset figure 6 , 

Swin Transformer demonstrates superior performance with 

notably higher accuracy and AUC metrics compared to its 

counterparts. This aligns with findings from similar studies that 

have highlighted the advantages of hierarchical vision 

transformers for radiographic image analysis. 

 

Figure 6: Performance Comparison of ViT, ConvNeXt, and Swin on Key 
Evaluation Metrics using DXA bone dataset 
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The DXA bone density scan dataset results indicate that Swin 

Transformer consistently achieves the highest performance 

metrics figure 6, particularly in precision and recall. ConvNeXt 

maintains competitive accuracy while offering significantly 

faster inference times, making it particularly suitable for 

clinical deployment scenarios where processing efficiency is 

crucial. The performance of ViT, while adequate, lags in recall 

metrics, suggesting potential limitations in its generalization 

capabilities for bone density classification. 

 
Figure 7: Performance Comparison of ViT, ConvNeXt, and Swin on DXA 

Bone Density Scan Dataset 

Learning curves across all three datasets demonstrate that 
ConvNeXt exhibits the fastest stabilization, particularly with 
the DXA and MURA-v2 datasets. Swin Transformer follows a 
similar convergence pattern but shows slightly slower progress 
with the more complex RA MRI dataset figure 7. The ViT 
architecture, despite its powerful representation learning 
capabilities, requires substantially more Epochs to reach 
optimal performance, reinforcing observations about 
transformer-based models in medical imaging applications. 

 

Figure 8: Performance Comparison of ViT, ConvNeXt, and Swin on RA MRI 

Dataset 

The RA MRI dataset proved most challenging for all models 

illustrated in figure 8, requiring extended training periods for 

convergence. This reflects the inherent complexity of MRI-

based representations in rheumatoid arthritis diagnosis. Even in 

this challenging context, Swin Transformer maintained its 

performance edge, particularly in recall and F1-score, 

suggesting its robust feature extraction capabilities are well-

suited for complex structural variations in medical imaging. 

 
Figure 9: Epochs to Convergence Across Datasets 

 

Swin and ConvNeXt models converge faster than ViT across 

all datasets Figure 8. The RA dataset demands more epochs for 

all models due to its complex MRI-based representations. 

MURA-v2, with its simpler grayscale structure, converges 

faster.  
 

The learning curves for ConvNeXt, Swin Transformer, and 
ViT across the MURA-v2, RA Dataset, and DXA Collection 
reveal distinct training behaviors figure 9. ConvNeXt and Swin 
Transformer demonstrate faster convergence and lower final 
loss values, indicating efficient feature extraction, whereas ViT 
requires more epochs to stabilize, aligning with its data-
intensive nature. The DXA Collection dataset is the easiest to 
learn, as all models achieve lower loss values quickly, while 
the RA Dataset poses more challenges, likely due to its 
complex MRI features. Overall, ConvNeXt and Swin 
Transformer are preferable for rapid training, while ViT may 
require extended training on larger datasets to reach optimal 
performance as shown figure 9.  

Inference time analysis across datasets in Figure 10 
confirms that ConvNeXt offers superior computational 
efficiency, making it an excellent candidate for real-time 
clinical applications. ViT consistently exhibits the highest 
inference times, confirming its computational intensity as noted 
in broader computer vision research. Swin Transformer strikes 
a balance between performance and speed, offering a practical 
compromise for medical imaging deployment scenarios. 
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Figure 10: Inference Time Comparison of ViT, ConvNeXt, and Swin Across 

Datasets 

 

Radar plots (Figure 11) indicate that Swin and ConvNeXt 
dominate in terms of Precision, Recall, and AUC, while ViT 
lags in speed and convergence. Swin’s hierarchical feature 
extraction proves beneficial in complex datasets like RA MRI, 
while ConvNeXt’s optimized CNN layers perform robustly in 
DXA scans.  

 

Figure 11: Overall Model Performance Comparison Using Radar Chart 

 

The comparative analysis of ViT, ConvNeXt, and Swin 
Transformer reveals that Swin Transformer excels in precision 
and recall, making it ideal for complex datasets like RA MRI 
and DXA scans. ConvNeXt, with its balance of accuracy, 
efficiency, and computational cost, emerges as the most 
practical choice for real-time applications and large-scale 
deployments. ViT, while powerful in feature extraction, suffers 
from slower convergence and higher inference time, requiring 
larger datasets and extended training to perform optimally. The 
radar plot further highlights Swin and ConvNeXt’s superiority 

in classification metrics, while ViT lags in speed and 
adaptability. Overall, ConvNeXt is recommended for 
efficiency-driven scenarios, whereas Swin Transformer is best 
suited for high-sensitivity applications such as osteoporosis 
detection.  

E. Validation of Experimental Results 

To validate the robustness of our results illustrated in 
Figure 12, we computed the AUC, generalization gap, 
statistical significance, and predictive uncertainty. Swin 
Transformer achieved AUC = 0.94 (p < 0.001), significantly 
outperforming ViT (AUC = 0.91) and ConvNeXt (AUC = 
0.92), as confirmed by a paired t-test (t = 4.24, p < 0.001). The 
generalization gap, calculated as Δgen = |Acc_train - Acc_test|, 
was lowest for Swin Transformer (0.02), indicating minimal 
overfitting compared to ViT (0.07). Monte Carlo dropout 
analysis with 100 stochastic passes further confirmed Swin 
Transformer’s stability, with predictive uncertainty estimated 
as σ² = (0.94 ± 0.02). These results validate the model’s 
superior generalization and reliability, reinforcing its clinical 
applicability in musculoskeletal disease detection. 

Furthermore, performance metrics such as precision (0.92), 
recall (0.91), and F1-score (0.91) remained consistent across 
multiple experimental runs, reinforcing the stability of the 
trained models. A five-fold cross-validation procedure ensured 
the reliability of the reported results, minimizing potential 
biases introduced by dataset variations. Monte Carlo dropout 
analysis further confirmed that Swin Transformer maintained a 
predictive uncertainty range within ±2%, underscoring its 
robustness in clinical deployment scenarios. 

Our scaling guidelines indicate that achieving near-
saturation AUC requires markedly different critical masses 𝑁* 
across modalities, with MRI demanding larger 𝑁 than X-
ray/DXA. Hierarchical transformers (Swin) maintain lower 

generalization gaps and higher recall under multi-modal 
integration and partial-modality ablation, whereas ViT benefits 
disproportionately from higher resolution when ample data are 
available. These effects provide actionable guidance for dataset 
curation and model selection in clinical pipelines. 

V. CONCLUSION 

Deep learning has significantly enhanced medical image 

analysis, particularly in diagnosing complex musculoskeletal 

3 1 2 

Figure 12: Comparison of Learning Curves for ConvNeXt (1), Swin Transformer (2), and ViT (3) Across Datasets 

 



 International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)  

Volume 4– Issue 3, July-September 2025 

 

 

Journal homepage: www.ijceds.com    21 
 

 

diseases such as osteoporosis and rheumatoid arthritis (RA). 

The study builds on theoretical principles of dataset scaling, 

self-attention mechanisms, and model generalization to 

optimize classification performance. Based on [13]) and [14], 

larger datasets improve deep learning models' ability to 

generalize, reducing bias and variance trade-offs. This study 

evaluates three state-of-the-art architectures—Vision 

Transformer (ViT), ConvNeXt, and Swin Transformer—to 

determine how dataset size and model complexity impact 

classification accuracy. Using over 200,000 medical images 

from X-ray, DXA, and MRI scans, the research highlights how 

self-supervised learning and attention-based architectures 

contribute to improving diagnostic precision, recall, and 

robustness. 

The experimental results confirm that Swin Transformer 

outperforms ConvNeXt and ViT, achieving the highest AUC 

(0.94), precision, and recall across datasets. ConvNeXt 

balances efficiency and accuracy, making it well-suited for 

real-time medical applications, while ViT struggles with 

convergence and inference speed despite strong feature 

extraction capabilities. Dataset scaling plays a crucial role, as 

larger datasets reduce overfitting tendencies and enhance 

generalization performance. Notably, the RA MRI dataset 

proves most challenging, requiring extended training epochs. 

The DXA dataset, on the other hand, is more learnable, 

yielding lower loss values across all models. Inference time 

analysis shows ConvNeXt as the most computationally 

efficient, while ViT is the slowest, highlighting practical 

considerations for clinical deployment. 

This study establishes that deep learning model performance 

scales with dataset size, reinforcing the importance of large, 

well-annotated datasets in medical AI. Swin Transformer is 

recommended for complex disease detection, while ConvNeXt 

offers the best trade-off between accuracy and computational 

efficiency. Future research should explore ensemble 

approaches combining Swin Transformer and ConvNeXt for 

enhanced performance. Additionally, improving model 

interpretability, integrating multi-modal fusion techniques, and 

refining self-supervised learning methods will be key in 

advancing AI-driven musculoskeletal disease diagnosis. 

Further validation on external datasets and clinical trials is 

necessary to ensure the real-world applicability of these models 

in healthcare. 

Beyond benchmarking, we deliver empirical dataset-scaling 

guidelines and model-selection recommendations tailored to 

musculoskeletal imaging and multi-modal integration. These 

insights support evidence-based planning of dataset growth and 

architecture choice for clinically viable deployments. 
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