

Journal homepage: www.ijceds.com 14

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

Methodology for modeling a
column-oriented database with Cassandra

Ahmed DOURHRI
1
, Mohamed HANINE

2
 and Hassan OUAHMANE

3

The Information Technology Laboratory
National School of Applied Sciences, Chouaib Doukkali University, El Jadida, Morocco

1
dourhriahmed@gmail.com ,

2
m.hanine.ensaj@gmail.com ,

3
hassan.ouahmane@yahoo.fr

Article history ABSTRACT

Received May 19, 2021
Revised June 09, 2021
Accepted July 03, 2021
Published July 20, 2021

 Cassandra data model is based on a dynamic schema, with a column-oriented

data model. This means that, unlike a relational database, it is not necessary to

model all the columns since a row potentially does not have the same set of

columns. Columns and their metadata can be added by the application when

needed. On the other hand, although the tables of a Cassandra database can be

flexible, in practice, it is advisable to associate some kind of schema. This paper

aims to explain a methodology for developing the physical model of a column-

oriented database from the data circulating in an information system, a model

also driven by the queries.

Keywords: Data modeling, NoSQL, column-oriented model, Cassandra, query

driven model.

I. INTRODUCTION

With the increase in Internet bandwidth, as well as the
decrease in costs of computer equipment, new
possibilities have emerged in the field of distributed
computing. The passage to the 21st century by the WEB
2.0 revolution has seen the data volume of some
companies increase the process. These data, mainly, from
social networks, database medical, economic indicators,
etc. Continuous computerization of processing of any
kind has resulted in an exponential increase in this
volume of data, which is now counted in petabytes, the
Anglo-Saxons have called it the Big Data. The
management of these volumes of data has therefore
become a problem that relational databases were no
longer able to handle. NoSQL brings together therefore
many databases that are no longer based on the logic of
relational representation. However, it is not easy to
explicitly define this that is a NoSql database as no
standard has yet been established.

The fundamental need that NoSQL meets is performance
to solve the problems related to "Big data". It is important
to know that SQL is not a relational model, but a data
manipulation language designed around the model
relational. NoSQL databases do not aim to move away
from this

language but rather from the relational model. A need has
emerged to design a robust schema for a database
considering, in addition, data useful to the information
system, any requests that will be expressed subsequently:
this is the subject of this research paper. To illustrate this
modeling, we have chosen CASSANDRA as NoSQL
oriented-column DBMS (Database Management System).
The process of this modeling consists of 3 steps: identify
useful data in the form of a conceptual data model,
capture the different queries that will be expressed, and
create the logical and physical model of the database. The
main reasons that led us to choose Cassandra as a target
database are its various advantages:

 Very fast to handle a large volume of data.

 Flexible data schemas

 Possibility to put in cluster several Cassandra
servers.

 Data replication.

Before presenting the steps of such modeling, we will
focus on relational databases using the famous SQL
language for querying and NoSQL databases. Each
NoSQL system has its language.

Relational database [1]: a relational database is a
database that relies on the relational model based on set
theory and having been invented by the mathematician
Edgar Codd in 1970. This model consists of dividing the
data into tables formed rows and columns possibly
interconnected by foreign keys. The systems managing
such databases are called relational database management

mailto:dourhriahmed@gmail.com
mailto:m.hanine.ensaj@gmail.com
mailto:hassan.ouahmane@yahoo.fr

Journal homepage: www.ijceds.com 15

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

systems (RDBMS). They use for data manipulating the
SQL, the abbreviation of Structured Query Language. The
strong point of these systems is the optimization of the
memory space necessary for data management (to the
detriment of query execution time).

NoSQL database [1]: NoSQL systems come to speed
up the querying of databases by offering the possibility of
creating flexible schemes and guarantee scalability if
necessary. Several models are available for these systems.

 The key-value model: data is stored in the form
of a dictionary. This type allows keeping high
performance in reading and/or writing. Several
products, opting for this model, exist as
Voldemort, Redis, Riak…

 Document model [6]: this model extends the key
values model in the sense that a database is a set
of documents represented in a standard format
(JSON: Javascript Object Notation, BSON,
etc.). The advantage of this model is the
recovery of a set of hierarchically structured
information from a single key. Among the well-
known implementations of this model, we cite
MongoDB and CouchDB.

 Graph model: graph-oriented databases are those
that store records in nodes and relationships
between records by edges. This type of database
is very efficient where there are a huge amount
of data strongly connected. Neo4j,
HyperGraphDB are examples of graph-oriented
DBMS.

 Column-oriented model [7] the notion of a table
in this model is different from the notion of a
table in a relational database. In this model, a
table can be viewed as a set of partitions that
contain rows with a similar structure. Each
partition in a table has a unique partition key
and each row in a partition may optionally have
a unique clustering key. Both keys can be
simple i.e. one column or composite i.e.
multiple columns. The combination of a
partition key and a clustering key uniquely
identifies a row in a table and is called a
primary key. To illustrate some of these notions,
Figure 1 shows tables with CQL (Cassandra

Query language) definitions and sample rows.
In Figure 1(a), the Country table contains
single-row partitions. Its primary key consists of
one column iso (iso code of a country) that is
also a simple partition key. This table is shown
to have six single-row partitions. In Figure 1(b),
the EpidemicDataByCountry [5] table contains
multi-row partitions. Its primary key consists of
partition key (iso) and clustering key
observationDate. This table is shown to have six
partitions, each one containing multiple rows.
For any given partition, its rows are ordered by
observationDate in ascending order.

Figure 2 shows the model structure of Cassandra, and
Table 1 shows some SQL concepts and their
correspondences in Cassandra.

II. PROPOSED METHODOLOGY

The main aim of this study is the presentation of a
methodology for facilitating the modeling of a column-
oriented database (case of Cassandra). We propose a
query-driven data modeling methodology for Apache
Cassandra [2]. A Cassandra solution architect starts data
modeling by building a conceptual data model and
defining an application workflow to capture all
application interactions with a database. The application
workflow describes access patterns or queries that a data-
driven application needs to run against the database.
Then, the architect maps the conceptual data model to a
logical data model. The logical data model specifies
Cassandra tables that can support application queries,
efficiently, according to the application workflow.
Finally, additional physical optimizations are applied to
produce a physical data model that can be used for
Apache Cassandra. The steps of the methodology are
visually displayed in Figure 3, which, as highlighted in
blue circles, explain how the methodology works. To
present each step, we will use an example of a database
representing the epidemic data for Coronavirus diseases
(COVID-19) in the world by country in Figure 4. The
application workflow in Figure 5 models a web
application to get data using well-defined queries.

Journal homepage: www.ijceds.com 16

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

(a) Table Country with single-row partitions

(b) Table EpidemicDataByCountry with multi-row partitions

Figure 1. Sample tables in Cassandra

Figure 2. Model structure of Cassandra

Journal homepage: www.ijceds.com 17

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

TABLE I. Basic SQL vs Cassandra Syntax

SQL terminology [4] Cassandra Terminology [3]
Database Database (or keyspace)

Table Table (or column family)

Row Row

Column Column

Primary key Primary key

join of tables Nesting with collections

(by the use of sets, maps, or lists)

CREATE TABLE Drug(

code INT,

name TEXT,

laboratory TEXT,

publicPrice REAL,

PRIMARY KEY (code)

);

CREATE TABLE Drug(

code INT,

name TEXT,

laboratory TEXT,

publicPrice REAL,

PRIMARY KEY (code)

);

INSERT INTO Drug (code,name,laboratory,publicPrice)

VALUES (1745, 'doliprane 500mg','sanofi', 15.30);

INSERT INTO Drug (code,name,laboratory,publicPrice)

VALUES (1745, 'doliprane 500mg','sanofi', 15.30);

CREATE INDEX ON Drug (name); CREATE INDEX ON Drug (name);

ALTER TABLE Drug ADD dayliDose INT; ALTER TABLE Drug ADD dayliDose INT;

UPDATE Drug SET publicPrice = publicPrice*1.1

WHERE laboratory=‟sanofi‟;

UPDATE Drug SET publicPrice = publicPrice*1.1

WHERE laboratory=‟sanofi‟;

DELETE FROM Drug

WHERE code=1439;

DELETE FROM Drug

WHERE code=1439;

SELECT * FROM Drug

WHERE laboratory = 'COOPER' and publicPrice<90;

SELECT * FROM Drug

WHERE laboratory = 'COOPER' and publicPrice<90;

DELETE FROM Drug; TRUNCATE Drug;

Figure 3. Cassandra Data Modeling

Journal homepage: www.ijceds.com 18

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

2.1. Conceptual Model

Initially, you will have to provide a detailed data

dictionary and then the conceptual data model of the
database that we want to create. In this paper, we have used
a UML class diagram to represent this conceptual level.

The first key to successful database design is understanding
the data, which is captured with a conceptual data model.
The importance and effort required for conceptual schema
should not be underestimated.

An entity, a relationship, and an attribute types on an ER
(Entity Relationship) diagram not only define which data
pieces need to be stored in a database but also which data
properties, such as entity type and relationship type keys,
need to be preserved and relied on to organize data
correctly.

2.2. Query model

Like data, queries directly affect table schema design, and if
our use case assumptions about the queries change, a
database schema will have to change. We define the three
broad access paths:

1) partition per query, 2) partition+ per query, and 3) table
or table+ per query.

The most efficient option is the “partition per query”,
when a query only retrieves one row, a subset of rows, or
all rows from a single partition.

Queries over tables are expressed in CQL, which has an
SQL-like syntax. Unlike SQL, CQL supports no binary
operations, such as joins, and has many rules for query
predicates that ensure efficiency and scalability:

 Only primary key columns may be used in a query
predicate.

 All partition key columns must be restricted by
values (i.e. equality search).

 All, some, or none of the clustering key columns
can be used in a query predicate.

 If a clustering key column is used in a query
predicate, then all clustering key columns that

precede this clustering column in the primary key
definition must also be used in the predicate.

 If a clustering key column is restricted by an
inequality search in a query predicate, then all
clustering key columns that precede this
clustering column in the primary key definition
must be restricted by values and no other
clustering column can be used in the predicate.

Intuitively, a query that restricts all partition key columns
by values returns all rows in a partition identified by the
specified partition key. For example, the following query
over EpidemicDataByCountry table in Figure1(b) returns
all statistics about the Brazil country:

SELECT population,observationDate,newCases,newDeaths

FROM EpidemicDataByCountry

WHERE iso=„BR‟:

A query that restricts all partition key columns and some
clustering key columns by values returns a subset of rows
from a partition that satisfy such a predicate. Similarly, a
query that restricts all partition key columns by values and
one clustering key column by range (preceding clustering
key columns are restricted by values) returns a subset of
rows from a partition that satisfy such a predicate. For
example, the following query over the
EpidemicDataByCountry table in Figure1(b) returns Brazil
statistics for January 2021.

SELECT population,observationDate,newCases,newDeaths

FROM EpidemicDataByCountry

WHERE iso=„BR‟ AND observationDate>=„2021-01-01‟

AND observationDate<=„2021-01-31‟;

Query results are always ordered based on the default order
specified for clustering key columns when a table is defined
(the CLUSTERING ORDER construct), unless a query
explicitly reverses the default order (the ORDER BY
construct). In the end, CQL supports a number of other
features, such as queries that use secondary indexes, IN,
and ALLOW FILTERING constructs. Our data modeling
methodology does not rely directly on such queries as their
performance is unpredictable on large datasets. Figure 5
illustrates a simple example of an application workflow for
managing covid-19 epidemic data. The application
workflow captures and shows queries that this database will
need to support. For readability, in this paper, we use verbal
descriptions of access patterns.

The sequence of workflow steps matters because it helps us
determine what data is available and required for each
query. For example, before we can show statistics about the
covid-19 disease of a country (query Q3), a list of countries
is required. The user first needs to display the list of
countries on the website (query Q1).

NB: the incidence rate of an epidemic (query Q4)

The incidence rate of an epidemic is called the ratio of the
number of new cases during a period over the size of the
target population during the same period. It is generally
expressed as "the number of new cases per 100,000 people

Figure 4. Conceptual Data Model of COVID-19 database

Journal homepage: www.ijceds.com 19

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

in a year". This is one of the criteria most important to
assess the frequency and the rate of appearance of an
epidemic.

Figure 5. Application workflow

2.3.Logical Data Modeling

The crucial point of the Cassandra data modeling
methodology is logical data modeling. It takes a conceptual
data model and maps it to a logical data model based on
queries defined in an application workflow. A logical data
model corresponds to a Cassandra database schema with
table schemas defining columns, primary, partition, and
clustering keys. We define the query-driven conceptual-to-
logical data model mapping via data modeling principles,
mapping rules, and mapping patterns.

One of the new features introduced by Cassandra is data
nesting. Data nesting refers to a technique that organizes
multiple entities (usually of the same type) together based
on a known criterion. Such criterion can be that all nested
entities must have the same value for some attribute (e.g.,
persons with the same country) or that all nested entities
must be related to a known entity of a different type (e.g.,
observations that concern a country). Data nesting is used
to achieve the “partition per query” access path, such that
multiple nested entities can be retrieved from a single
partition. There are two mechanisms in Cassandra to nest
data: multi-row partitions and collection types. Our
methodology primarily relies on multi-row partitions to
achieve the best performance. Another key to successful
database design is data duplication. Duplicating data in
Cassandra across multiple tables, partitions, and rows is a
common practice that is required to support efficiently
different queries over the same data.

A. Mapping rules

These rules guide a query-driven transition from a
conceptual data model to a logical data model.

 MR1 (Entities and Relationships). Entity and
relationship types map to tables, while entities
and relationships map to table rows. Attribute
types that describe entities and relationships at the
conceptual level must be preserved as table
columns at the logical level. Violation of this rule
may lead to data loss.

 MR2 (Equality Search Attributes). Equality search
attributes, which are used in a query predicate,
map to the prefix columns of a table primary key.
Such columns must include all partition key
columns and, optionally, one or more clustering
key columns. Violation of this rule may result in
the inability to support query requirements.

 MR3 (Inequality Search Attributes). An inequality
search attribute, which is used in a query
predicate, maps to a table clustering key column.
In the primary key definition, a column that
participates in inequality search must follow
columns that participate in an equality search.
Violation of this rule may result in the inability to
support query requirements.

 MR4 (Ordering Attributes). Ordering attributes,
which are specified in a query, map to clustering
key columns with ascending or descending
clustering order as prescribed by the query.
Violation of this rule may result in the inability to
support query requirements.

 MR5 (Key Attributes). Key attribute types map to
primary key columns. A table that stores entities
or relationships as rows must include key
attributes that uniquely identify these entities or
relationships as part of the table primary key to
uniquely identify table rows. Violation of this rule
may lead to data loss.

To design a table schema, it is important to apply these
mapping rules in the context of a particular query and a
subgraph of the conceptual data model that the query deals
with. The rules should be applied in the same order as they
are listed above.

For example, Figure 6 illustrates how the mapping rules
are applied to design a table for query Q3 “number of new
deaths and new infections of a country in a date range
(ordered by descending chronological order)” that deals
with the relationship Country-Concern-Observation (see
Figure 4). Figure 6 visualizes a table resulting after each
mapping rule, where K and C denote partition and
clustering key columns, respectively. The arrows next to
the clustering key columns denote ascending (↑) or
descending (↓) order. MR1 results in table
ObservationsByCountry whose columns correspond to the
attribute types used in the query to search for, search on, or
order by. MR2 maps the equality search attribute to the
partition key column iso. MR3 maps the inequality search
attribute to the clustering key column dateObs, and MR4
changes the clustering order to descending. Finally, MR5
maps the key attribute to the clustering key column id.

Journal homepage: www.ijceds.com 20

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

Figure 6. Sample table schema design using the mapping rules

B. Mapping Patterns

Based on the above mapping rules, we design
mapping patterns that serve as the basis for automating
Cassandra database schema design. Given a query and
a conceptual data model subgraph that is relevant to
the query, each mapping pattern defines the final table
schema design without the need to apply individual
mapping rules. While we define a number of different
mapping patterns, due to space limitations, we only
present one mapping pattern and one example.

A sample mapping pattern is illustrated in Figure7. It
is applicable for the case when a given query deals
with one-to-many relationships and results in a table
schema that nests many entities (rows) under one
entity (partition) according to the relationships. When
applied to our query “number of new deaths and new
infections of a country in a date range (ordered by
descending chronological order)” and the relationship
Country-Concern-Observation, this mapping pattern
results in the table schema shown in Figure6. With our
mapping patterns, logical data modeling becomes as
simple as finding an appropriate mapping pattern and
applying it, which can be automated.

2.4. Physical Data Modeling

The final step of our methodology is the analysis and
optimization of a logical data model to produce a
physical data model. While the modeling principles,
mapping rules, and mapping patterns ensure a correct
and efficient logical schema, there are additional
efficiency concerns related to database engine
constraints or finite cluster resources. A typical
analysis of a logical data model involves

the estimation of table partition sizes and data
duplication factors. Some of the common optimization
techniques include partition splitting, inverted indexes,
data aggregation, and concurrent data access
optimizations. These and other techniques are
described in [7].

III. CONCLUSION

In this paper, we have focused on the modeling of
oriented-column databases driven by the data and the
queries. Our paper was limited to one-to-many
associations in the mapping pattern. As a perspective,
we can extend our paper to other types of associations.
Our paper can be, too, enriched by the development of
software to make the process reality and automatically
create the database schema by generating the source
code in CQL language.

REFERENCES

[1]. Mason, R. T., „NoSQL databases and data modeling

techniques for a document-oriented NoSQL database‟.

2015, Proceedings of Informing Science & IT

Education Conference (InSITE)

[2]. Mukherjee S., University of the Cumberlands Chicago,

United States , The battle between NoSQL Databases

and RDBMS‟. 2019, Available at SSRN 3393986

[3]. Hanine M., Benderrag A., Boutkhoum O., „Data

Migration Methodology from Relational to NoSQL

Databases‟. 2015, World Academy of Science,

Engineering and Technology International Journal of

Computer, Electrical, Automation, Control and

Information Engineering, Vol:9, No:12

Journal homepage: www.ijceds.com 21

International Journal of Computer Engineering and Data Science (ISSN: 2737-8543)

 Volume 1– Issue 1, 20/07/2021

[4]. Chebotko A., Kashlev A., Lu S., „A Big Data Modeling

Methodology for Apache Cassandra‟. 2015, IEEE

International Congress on Big Data

[5]. Sam R. Alapati, „Introduction to the Cassandra Query

Language‟, In book: Expert Apache Cassandra

Administration (pp.189-247), January 2018

[6]. Lemahieu W., Vanden B. S., Baesens B., „Relational

Databases: Structured Query Language (SQL)‟, In

book: Principles of Database Management: The

Practical Guide to Storing, Managing and Analyzing

Big and Small Data (pp.146-206), 2019/08/01

[7]. https://www.upsti.fr/espace-etudiants/annales-de-

concours/topics/ipt-modelisation-de-la-

propagation-d-une-epidemie consulted on June 2021)

[8]. https://docs.datastax.com/en/dse/6.7/cql/cql/ddl/da

taModelingApproach.html /(consulted on June

2021)

Figure 7. Sample mapping pattern

https://www.upsti.fr/espace-etudiants/annales-de-concours/topics/ipt-modelisation-de-la-propagation-d-une-epidemie
https://www.upsti.fr/espace-etudiants/annales-de-concours/topics/ipt-modelisation-de-la-propagation-d-une-epidemie
https://www.upsti.fr/espace-etudiants/annales-de-concours/topics/ipt-modelisation-de-la-propagation-d-une-epidemie

